

CPT - DEC. 2015

Test Code - C D J 5 1 7 8

(100 Marks)

Que. No.	Answer	Solution
1.	D	Let the first instalment be a, and the common difference is $d = 10$ The sum of 30 instalments is 6240. $s_{30} = 6240$ In an AP, $S_n = \frac{n}{2} [2a + (n - 1)d]$ $6240 = \frac{30}{2} [2a + (30 - 1)10]$ $\frac{6240 \times 2}{30} = 2a + 290$ 2a = 416 - 290 2a = 126 a = 63
2.	C	The first instalment of (63 a = 80, d = -5 $s_n = \frac{n}{2} [2a + (n - 1)d]$ $\therefore s_{20=\frac{20}{2} [2 \times 80 + (20 - 1)(-5)]}$ $= 10 [160 - 19 \times 5]$ = 10 [160 - 95] $= 10 \times 65$ = 650
3.	C	Lets consider two O's to be one letter \therefore Total No. of letter is 5 No. of arrangement when both O's together = 5! = 120 \therefore Total No. of arrangement $= \frac{6!}{2!} = 360$ \therefore No. of ways when O's are not together = 360 - 120 = 240
4.	A	3 $S = 2n + 1$ $\therefore^{2n+1}C_{1} + ^{2n+1}C_{2} + ^{2n+1}C_{3} + \dots + ^{2n+1}C_{n} = 63$ $\therefore^{2n+1}C_{0} + ^{2n+1}C_{1} + ^{2n+1}C_{2} + \dots + ^{2n+1}C_{2n-1} + ^{2n+1}C_{2n} + ^{2n+1}C_{2n+1} = 2^{2n+1}$ $\therefore^{2n+1}C_{2n+1} = ^{2n+1}C_{0}$ $= 1$ $\therefore^{2n+1}C_{2n} = ^{2n+1}C_{1}$ Hence 2 + 2 × 63 = 2 ²ⁿ⁺¹ Or, 2 ²ⁿ⁺¹ = 128 = 2 ⁷ 2n + 1 = 7 2n = 6 n = 3
5.	С	$\log_a e \cdot \frac{1}{x}$ $y = \log_a x$

r	T	
		$=\frac{\log_e x}{1-1}$
		$\log_e a$ dy = 1 + d (1) = 1
		$\therefore \frac{dy}{dx} = \frac{1}{\log_2 a} \cdot \frac{dx}{dx} \left(\frac{1}{x}\right) = \log_a e \cdot \frac{1}{x}$
6.	В	$x^4 + x^3 + x^2 + x + c$
		$\int (4x^3 + 3x^2 + 2x + 1)dx = \frac{4x^4}{4} + \frac{3x^3}{2} + \frac{2x^2}{2} + x + c = x^4 + x^3 + x^2 + x + c$
7.	D	Let the price of 1 radio be ₹ x and television be ₹ y
		Then, $6x + 4y = 18,480$ (1)
		14x + 2y = 18,480(2)
		Solving (1) & (2) simultaneously :
		6x + 4y = 18,480
		28x + 4y = 36,960
		$\frac{(-)}{22\pi} = \frac{19499}{-10499}$
		x = 840
		When, $x = 840, 6 \times 840 + 4y = 18,480$
		4y = 18,480 - 5040
		$v = \frac{13,440}{3} = 3360$
8.	С	
		Let $\sqrt{\sqrt{6 + \sqrt{6}} + \sqrt{6 \dots \dots \infty}} = y$ (1)
		On squaring both sides, we get
		$6 + \sqrt{\frac{6}{6} + \frac{\sqrt{6}}{6}} + \frac{\sqrt{6}}{6} = w^2$
		$0 + \sqrt{y} + \sqrt{0} + \sqrt{0} + \sqrt{0} \dots \dots$
		$6 + y = y^2 [From(1)]$
		$y^2 - y - 6 = 0$
		$y^2 - 3y + 2y - 6 = 0$
		y(y-3) + 2(y-3) = 0
		(y + 2) (y - 3) = 0
		y = -2, 3
9	- D	y = -2 is not possible, therefore $y = 3$
0.	В	Let the numbers be x and $x + 2$ $u^2 + (u + 2)^2 = 24$
		$x^{2} + (x + 2)^{2} = 34$
		$\Rightarrow x^{-} + x^{-} + 4x + 4 - 34 = 0$
		$\Rightarrow 2x + 4x - 50 = 0$ $\Rightarrow x^2 + 2x - 15 = 0$
		$ \Rightarrow x + 2x - 15 = 0 $ $ \Rightarrow (x + 5)(x - 3) = 0 $
		$\Rightarrow (x+3)(x-3) = 0$ Therefore $x = -5.3$
		Since the numbers are positive, therefore $x = 3$ and $x + 2 = 5$.
10.	C	Here $a = 7 r = -2/7$
	Ŭ	$S = \frac{a}{7} = \frac{7}{7} = \frac{7}{7} = \frac{49}{49}$
		$r_{\infty} = r_{1-r} = r_{1-(-2/7)} = r_{1+\frac{2}{7}} = r_{\frac{7}{7}} = r_{\frac{7}{7}} = r_{\frac{7}{7}} = r_{\frac{7}{7}}$
11.	В	It is GP with $a = 1$ and $r = 3$, $S_n = 364$
		$S_n = \frac{a(r^n - 1)}{r - 1}$
		$\Rightarrow 364 = \frac{1(3^n - 1)}{2}$
		$ \xrightarrow{3-1} 264 \times 2 = 2^n = 1 $
		$\Rightarrow 3^n - 1 = 728$
		$\Rightarrow 3^n = 729$
L		, , , , , , , , , , , , , , , , , , , ,

		$\Rightarrow 3^n = 3^6$
		$\Rightarrow n = 6$
12.	С	34
		$\lim_{x \to 1} x + x^2 + x^3 - 39 = 0$
		$\lim_{x \to 3} \frac{x-3}{x-3} = \frac{1}{0}$
		$= \lim_{x \to 2} \frac{1 + 2x + 3x^2}{1} = 1 + 6 + 27 = 34$
13.	D	$\frac{x-3}{1}$
	2	$\lim_{x\to 0} \left(1 + \frac{\pi}{3}\right)$
		$=\left[\lim_{x \to 0} \left(1 + \frac{4x}{x}\right)^{1/x}\right]^5$
		$\begin{bmatrix} x \\ x \\ y \\ z \\ z$
1.1	P	$= (e^{1/5})^5 = e^{25/5}$
14.	Б	Mean $\overline{x} = \frac{\Sigma x}{N}$
		In correct $\sum x = N\overline{x}$
		$= 50 \times 5,850$
		= 2,92,500
		Correct $\sum x =$ in correct $\sum x +$ Right value – wrong value
		= 2,92,500 + 7,800 - 8,000
		= 2,92,500 - 200
		= 2,92,300
		Correct mean = $\frac{0.0002 \text{ Jm}}{\text{N}}$
		$=\frac{2,92,300}{50}$
		= 5,846
15.	В	17.75
		$\overline{\mathbf{X}} = \frac{\Sigma \mathbf{X}}{\mathbf{N}}$
		$\Sigma X = \overline{X}. N$
		$18 = \frac{\Sigma X}{7}$
		$\Sigma X = 126$
		When New observation is Added
		$\Sigma X = 126 + 16 = 142$
		$\overline{\mathbf{X}} = \frac{\sum \mathbf{X}}{N}$
		N 142
		$=$ ${8}$
		= 17.75
		New X = 17.75
16.	В	11.5
		$X_{12} = 11.0$ N ₁₂ = 12
		$X_{1} = 10.5$ N ₁ = 6
		$X_2 = f \qquad N_2 = b$ $N_1 \overline{y}_1 + N_2 \overline{y}_2$
		$\bar{x}_{12} = \frac{1 \cdot N_1 + N_2 \cdot N_2}{N_1 + N_2}$
		$11.0 = \frac{6 \times 10.5 + 6 \times \overline{X_2}}{6 + 6}$
		$11 0 = \frac{63+6\times\bar{X}_2}{2}$
		12 12 132 - 63 + 6 \overline{X}
		$152 - 05 + 0. \Lambda_2$

	<u> </u>	
		132 - 63 = 6. X2
		$69 = 6. \bar{X}_2$
		$\bar{X}_2 = 11.5$
		Average of last six Numbers = 11.5
17.	C	Coincident As the value of r increase numerically from 0 to 1, the angle between regression equations decreases from 90° to 0° . In other words, the farther the two regression lines are from each other, the lesser is the degree of correlation (i.e. approaching – 1) and nearer the two regression lines are to each other, the higher is the degree of correlation(i.e. approaching + 1) The above explanation clarifies if r = 1. The two lines of regression
18	R	lines of regressions are coincident.
		Cov (x, y) = 8.4 Var(x) = 25 S.D.(σx) = $\sqrt{25} = 5$ Var(y) = 36 S.D. of y (σy) = $\sqrt{36} = 6$ Karl Pearson's Coefficient of Correlation R = $\frac{Cov(x, y)}{\sigma x \cdot \sigma y}$ R = $\frac{8.4}{\frac{5 \times 6}{30}}$
		R = 0.28
13.		The equiprobable sample space of the experiment consists $6 \times 6 \times 6$ sample points Event A = same number appears on each of the three die. = {(1,1,1) (2,2,2)(3,3,3) (4,4,4) (5,5,5) (6,6,6)} i.e. $n(A) = 6$ Hence, the required probability = $\frac{6}{6 \times 6 \times 6} = \frac{1}{36}$
20.	В	Exhaustive
21.	В	A ratio
22.	С	Let the number of boys and girls be x and 2x respectively. Number of those who do not get scholarship = $(80\% \text{ of } 3x) + (75\% \text{ of } 2x)$ = $\left(\frac{80}{100} \times 3x\right) + \left(\frac{75}{100} \times 2x\right) = \frac{39x}{10}$ Required percentage = $\left(\frac{39x}{10} \times \frac{1}{5x} \times 100\right)\%$ = 78%
23.	A	Let the original number of seats in Mathematics, Physics and Biology be 5x, 7x and 8x respectively. Number of increased seats are : (140% of 5x), (150% of 7x and (175% of 8x) i.e., $\left(\frac{140}{100} \times 5x\right)$, $\left(\frac{150}{100} \times 7x\right)$ and $\left(\frac{175}{100} \times 8x\right)$ or $7x$, $\frac{21x}{2}$ and $14x$. Required Ratio = $7x : \frac{21x}{2} : 14x = 14x : 21x : 28x = 2 : 3 : 4$
24.	С	16,4,8 Let the number of Re. 1, 50p. and 25p. coins be 4x, x and 2x respectively
		4 Page

$ \begin{array}{c cccc} & A & x + 0.5x + 0.5x = 20 \\ & \Rightarrow 4x + 0.5x + 0.5x = 20 \\ & \Rightarrow 5x = 20 \\ & x^2 - 153 \\ & x^2 - $		1	Therefore the emount will be
$\begin{array}{c cccc} & A & X + 1 + X + 0.5 + 2X + 0.5 + 20 \\ \Rightarrow A + 0.5x + 0.5x = 20 \\ \Rightarrow 5x = 20 \\ \Rightarrow 5x = 20 \\ \Rightarrow x = 4 \\ \hline & The number of Re 1, 50p. and 25p. coins are 16, 4, 8. \\ \hline & & X + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$			I nerefore the amount will be
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$4x \times 1 + x \times 0.5 + 2x \times 0.25 = 20$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$\Rightarrow 4x + 0.5x + 0.5x = 20$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$\Rightarrow 5x = 20$
The number of Re. 1, 50p. and 25p. coins are 16, 4, 8. 25. C $\frac{16C_{3}}{2 \text{ are already selected}}$ 30. there are only 9 4 are excluded & 2 are selected \therefore total 22 - 4 - 2 = 16 No. of ways is $16C_{3}$ 26. B 18 18 27. B $\lim_{x \to 0} \frac{2^{k_{1}x^{2}-2^{k_{1}}}{x^{2}-n} = \frac{153}{2}$ $\frac{n^{2}-n}{n} = \frac{153 \times 2}{n^{2}-n}$ $= \frac{10}{305}$ $\frac{n^{2}-n}{n} = \frac{153 \times 2}{n^{2}-n}$ $= \frac{10}{305}$ $\frac{n^{2}-n}{n} = \frac{153 \times 2}{n^{2}-n}$ $= \frac{10}{305}$ $\frac{n^{2}-n}{n} = \frac{1}{305}$ $\frac{n^{2}-1}{n} = \frac{1}{305} = \frac{1}{2}$ $= \log 5 + \log 3 - \log 2$ $= \log 15 - \log 2 = \log 15/2$ $28.$ B $\frac{(x-1)(2x-3)}{x^{2}} = \frac{1}{x=-x} \times \frac{(2x+3)}{x} = \lim_{x \to \infty} (1-\frac{1}{x})\lim_{x \to \infty} (2+\frac{3}{x}) = 2$ 29. A R = ? n = 2 $A = P(1 + R)^{n}$ $1348.32 = 1200(1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ R = 0.06 = 6% 30. A R = $\frac{20}{x} = 5 = 0.05$ $N = 4x\frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000(1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			$\Rightarrow x = 4$
25. C $\frac{1}{2} \frac{1}{4} \frac{1}{6} \frac{1}{2} \frac{1}{4} \frac{1}{4$			The number of Re. 1, 50p. and 25p. coins are 16, 4, 8.
2 are an excluded & So, there are only 9 4 are excluded & 2 are selected .: total 22 - 4 - 2 = 16 No. of ways is 16C ₀ 26. B 18 No. of matches played = nC_2 = 153 n(n-1) = 153 $n^2 - n$ = 305 $n^2 - n$ = 305 $n^2 - n$ = 305 $n^2 - n$ = 305 $n^2 - n$ = 306 (n - 18) (n + 17) n = 18, n = -17 is negative .: n = 18 27. B $\lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\frac{1}{x} = \lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\frac{1}{x} = \lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\frac{1}{x} = \lim_{x \to 10} \frac{5^{x+y^2-x^2-1}}{x} = \frac{0}{n}$ form $\frac{1}{x^2} = \log 15 - \log 2 = \log 15/2$ 28. B $(x-1)(2x-3) = \lim_{x \to 10} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x \to 10} \left(1 - \frac{1}{x}\right) \lim_{x \to 10} \left(2 + \frac{3}{x}\right) = 2$ 29. A R = ? n = 2 A = P(1 + R) ⁿ 1348.32 = 1200(1 + R) ² $(1.06)^2 = (1 + R)^2$ $(1.06)^2 = (1 + R)^2$ $(1.06)^2 = (1 + R)^2$ $(1.06)^2 = (1 + R)^2$ R = 0.06 = 6% 30. A R = $\frac{2n}{4} = 5 = 0.05$ N = $4x\frac{1}{2} = 2$ A = P(1 + R) ⁿ = 2000 (1 + 0.05)^2 = 2000 × (1.05) ²	25.	С	$^{16}C_9$
$\begin{array}{c cccc} & A are excluded $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			So, there are only 9
$\begin{array}{c cccc} & \vdots & \text{total } 22 - 4 - 2 \\ & = 16 \\ \text{No. of ways is } 16C_{9} \\ \hline \text{26.} & \text{B} \\ & \text{No. of matches played = } nC_{2} = 153 \\ & \frac{n(n-1)}{2} = 153 \\ & n^{2} - n & = 153 \times 2 \\ & n^{2} - n & = 305 \\ & n^{2} - n - 306 & = 0 \\ & (n-18)(n+17) \\ & n = 18, n = .17 \\ & n = .17 \text{ is negative} \\ & \therefore n = 18 \\ \hline \text{27.} & \text{B} \\ & \lim_{x \to 0} \frac{5^{x_{1} x_{2} x_{2} - 1}}{x} = \frac{0}{0} \text{ form} \\ & = \lim_{x \to 0} \frac{5^{x_{1} x_{2} x_{2} - x_{1}}{x} = \frac{0}{0} \text{ form} \\ & = \log 5 + \log 3 - \log 2 \\ & = \log 15 - \log 2 = \log 15/2 \\ \hline \text{28.} & \text{B} \\ & \frac{(x-1)(2x-3)}{x^{2}} = \lim_{x \to \infty} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2 \\ \hline \text{29.} & \text{A} \\ & \text{R} = ? \\ & n = 2 \\ & \text{A} \\ & \text{R} = P(1 + R)^{n} \\ & 1348.32 = 1200(1 + R)^{2} \\ & \frac{1348.32}{1200} = (1 + R)^{2} \\ & \frac{1348.32}{1200} = (1 + R)^{2} \\ & \frac{1.236}{1200} = (1 + R)^{2} \\ & (1.06)^{2} = (1 + R)^{2} \\ & \text{R} \\ & = 0.06 \\ & = 6\% \\ \hline \\ \hline \hline \text{30.} & \text{A} \\ & \text{R} \\ & = \frac{20}{4} \\ & \text{R} \\ & = 200 \\ & \text{K} = 12 \\ & \text{A} \\ & \text{R} \\ & \text{R} \\ & = 2000 \times (1.05)^{2} \\ & = 2000 \times (1.05)^{2} \\ & = 2000 \times (1.05)^{2} \\ \end{array}$			4 are excluded & 2 are selected
$\begin{array}{c ccccc} & = & 16 & & & \\ & No. of ways is & 16C_{9} & & \\ \hline & & & & 18 & \\ & No. of matches played = & nC_{2} & = & 153 & & \\ & & & & & n(n-1) & & = & 153 & 2 & & \\ & & & & n^{2} - n & & = & 153 & 2 & & \\ & & & & n^{2} - n & & = & 153 & 2 & & \\ & & & & n^{2} - n & & = & 305 & & & \\ & & & & n^{2} - n & & = & 305 & & & \\ & & & & n^{2} - n & & = & 305 & & & \\ & & & & n^{2} - n & & = & 305 & & & \\ & & & & & n^{2} - n & & = & 305 & & & \\ & & & & & n^{2} - n & & = & 305 & & & \\ & & & & & n^{2} - n & & = & 305 & & & \\ & & & & & n^{2} - n & & = & 305 & & & \\ & & & & & & n^{2} - n & & = & 305 & & & \\ & & & & & & n^{2} - n & & & & \\ & & & & & & n^{2} - n & & & & \\ \end{array}$			∴ total 22 – 4 – 2
26. B 18 No. of ways is $16C_{9}$ 26. B 18 No. of matches played $= nC_{2} = 153$ $\frac{n(n-1)}{2} = 153 \times 2$ $n^{2} - n = 153 \times 2$ $n^{2} - n = 305$ $n^{2} - n = 305$ $n^{2} - n = 305$ $n^{2} - n = 305$ $n^{2} - n = 17$ is negative $\therefore n = 18$ 27. B $\lim_{x \to 0} \frac{y^{2} + y^{2} - x^{2} - 1}{x} = \frac{0}{0}$ form $= \lim_{x \to 0} \frac{y^{2} + y^{2} - x^{2} - 1}{x} = \frac{0}{0}$ form $= \lim_{x \to 0} \frac{y^{2} + y^{2} - x^{2} - 1}{x} = \frac{0}{0}$ form $= \lim_{x \to 0} \frac{y^{2} + y^{2} - x^{2} - 1}{x} = \frac{0}{0}$ form $= \log 5 + \log 3 - \log 2$ $= \log 5 + \log 3 - \log 2$ $= \log 5 - \log 2 = \log 15/2$ 28. B (x - 1)(2x - 3) $\frac{x^{2}}{x^{2}} = \lim_{x \to \infty} \frac{x - 1}{x} \times \frac{(2x + 3)}{x} = \lim_{x \to \infty} (1 - \frac{1}{x}) \lim_{x \to \infty} (2 + \frac{3}{x}) = 2$ 29. A R = ? n = 2 A = P(1 + R)^{n} $1348.32 = 1200(1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ R = 0.06 = 6% 30. A R = $\frac{20}{4}$ = 5 = 0.05 $N = 4x\frac{1}{2} = 2$ A = P(1 + R)^{n} $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			= 16
20. B No. of matches played = nC_2 = 153 $\frac{n(n-1)}{2}$ = 153 $n^2 - n$ = 153 × 2 $n^2 - n$ = 305 $n^2 - n - 306$ = 0 (n-18) (n+17) n = 18, n = -17 n = -17 is negative $\therefore n = 18$ 27. B $\lim_{x\to 0} \frac{g^{2+}ng^{3-}2^{x}-1}{1} = \frac{0}{0}$ form $= \log 5 + \log 2 - \log 2$ $= \log 5 + \log 2 - \log 2$ $= \log 5 + \log 2 - \log 2$ $= \log 5 - \log 2 = \log 15/2$ 28. B $(x-1)(2x-3) = \lim_{x\to\infty} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x\to\infty} (1-\frac{1}{x}) \lim_{x\to\infty} (2+\frac{3}{x}) = 2$ 29. A n = 2 A n = 2 A n = 2 A n = 2 A n = 2 A n = 2 (1 + R) ² $\frac{1348.32}{1200} = (1 + R)^2$ $(1.06)^2 = (1 + R)^2$ $(1.06)^2 = (1 + R)^2$ R = 0.06 = 6% 30. A R = $\frac{2n}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ A = P(1 + R) ⁿ $= 2000 (1 + 0.05)^2$ $= 2000 \times (1.05)^2$		П	No. of ways is $16C_9$
$\frac{n(n-1)}{2} = 153 \times 2$ $\frac{n(n-1)}{2} = 153 \times 2$ $\frac{n^{2} - n}{2} = 305$ $\frac{n^{2} - n}{n^{2} - n} = \frac{305}{n^{2} - n}$ $\frac{n^{2} - n}{n - 18} = n - 17$ $n = 17 \text{ is negative}$ $\frac{n - 18}{n - 17} = \frac{1}{n} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$	20.	В	No of matches played = nC_{0} = 153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			n(n-1) = 153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$n^2 - n = 153 \times 2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$n^2 - n = 305$
$\begin{array}{c cccc} & (n-18) (n+17) \\ n = 18 & n = -17 \\ n = -17 \text{ is negative} \\ \therefore n = 18 \\ \hline & 27. & B & \lim_{x \to 0} \frac{5^{x} p y^{x} - 2^{x-1}}{x} = \frac{0}{0} \text{ form} \\ = \lim_{x \to 0} \frac{5^{x} (p g 3 + 3^{x} \log 3 - 2^{x} \log 2)}{1} \\ = \log 5 + \log 3 - \log 2 \\ = \log 5 - \log 2 = \log 15/2 \\ \hline & 28. & B & \frac{(x-1)(2x-3)}{x^{2}} = \lim_{x \to \infty} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2 \\ \hline & 29. & A & R = ? \\ n = 2 \\ A & = P(1 + R)^{n} \\ 1348.32 & = 1200(1 + R)^{2} \\ \frac{1348.32}{1200} & = (1 + R)^{2} \\ 1.1236 & = (1 + R)^{2} \\ (1.06)^{2} & = (1 + R)^{2} \\ R & = 0.06 \\ & = 6\% \\ \hline & 30. & A & R = \frac{20}{4} = 5 = 0.05 \\ N & = 4 \times \frac{1}{2} = 2 \\ A & = P(1 + R)^{n} \\ & = 2000 (1 + 0.05)^{2} \\ & = 2000 \times (1.05)^{2} \\ \hline & \end{array}$			$n^2 - n - 306 = 0$
$\begin{array}{c cccc} & \text{In } = 10 &, \text{ In } = -17 \\ & \text{n} = 17 & \text{in engative} \\ & \therefore \text{ n} = 18 \\ \hline \\ \hline \\ 27. & \text{B} & \lim_{x \to 0} \frac{5^{x} + 3^{x} - 2^{x} - 1}{x} = \frac{0}{0} \text{ form} \\ & = \lim_{x \to 0} \frac{5^{x} \log 5 + 3^{x} \log 3 - 2^{x} \log 2}{1} \\ & = \log 5 + \log 3 - \log 2 \\ & = \log 5 - \log 2 = \log 15/2 \\ \hline \\ \hline \\ 28. & \text{B} & \frac{(x-1)(2x-3)}{x^{2}} = \lim_{x \to \infty} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2 \\ \hline \\ 29. & \text{A} & \text{R} = ? \\ & \text{n} = 2 \\ & \text{A} & = P(1 + R)^{n} \\ & 1348.32 = 1200(1 + R)^{2} \\ & \frac{1348.32}{1200} = (1 + R)^{2} \\ & \frac{1348.32}{1200} = (1 + R)^{2} \\ & (1.06)^{2} = (1 + R)^{2} \\ & (1.06)^{2} = (1 + R)^{2} \\ & \text{R} & = 0.06 \\ & = 6\% \\ \hline \\ $			(n - 18)(n + 17)
27. B $\lim_{x \to 0} \frac{5^{x} + 3^{x} - 2^{x} - 1}{x} = \frac{0}{0} \text{ form}$ $= \lim_{x \to 0} \frac{5^{x} + 3^{x} - 2^{x} - 1}{x} = \frac{0}{1} \text{ form}$ $= \log 5 + \log 3 - \log 2$ $= \log 5 - \log 2 = \log 15/2$ 28. B $\frac{(x - 1)(2x - 3)}{x^{2}} = \lim_{x \to \infty} \frac{x - 1}{x} \times \frac{(2x + 3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2$ 29. A R = ? n = 2 A R = ? n = 2 A A = P(1 + R)^{n} 1348.32 = 1200(1 + R)^{2} 1.1236 = (1 + R)^{2} (1.06)^{2} = (1 + R)^{2} R = 0.06 = 6% 30. A R = $\frac{20}{4} = 5 = 0.05$ N = $4 \times \frac{1}{2} = 2$ A = P(1 + R)^{n} = 2000 (1 + 0.05)^{2} = 2000 × (1.05)^{2}			n = 10, $n = -17n = -17$ is negative
27. B $\lim_{x \to 0} \frac{5^{x} + 3^{x} - 2^{x} - 1}{x} = \frac{0}{0} \text{ form}$ $= \lim_{x \to 0} \frac{5^{x} \log 5 + 3^{x} \log 3 - 2^{x} \log 2}{x}$ $= \log 5 + \log 3 - \log 2$ $= \log 15 - \log 2 = \log 15/2$ 28. B $\frac{(x - 1)(2x - 3)}{x^{2}} = \lim_{x \to \infty} \frac{x - 1}{x} \times \frac{(2x + 3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2$ 29. A $R = ?$ $n = 2$ A $= P(1 + R)^{n}$ $1348.32 = 1200(1 + R)^{2}$ $\frac{1348.32}{1200} = (1 + R)^{2}$ $\frac{1348.32}{1200} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $R = 0.06$ $= 6\%$ 30. A $R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			\therefore n = 18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27.	В	$\lim \frac{5^{x}+3^{x}-2^{x}-1}{2} = \frac{0}{2}$ form
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccc} x & 0 \\ x \rightarrow 0 & x & 0 \\ x \rightarrow 0 & x & x & 0 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$=\lim_{x \to 0} \frac{5 \log 5 + 5 \log 3 - 2 \log 2}{1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$= \log 5 + \log 3 - \log 2$
28. B $\frac{(x-1)(2x-3)}{x^2} = \lim_{x \to \infty} \frac{x-1}{x} \times \frac{(2x+3)}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{3}{x}\right) = 2$ 29. A R = ? n = 2 A = P(1 + R) ⁿ 1348.32 = 1200(1 + R) ² $\frac{1348.32}{1200} = (1 + R)^2$ 1.1236 = (1 + R) ² (1.06) ² = (1 + R) ² R = 0.06 = 6% 30. A R = $\frac{20}{4} = 5 = 0.05$ N = $4 \times \frac{1}{2} = 2$ A = P(1 + R) ⁿ = 2000 (1 + 0.05) ² = 2000 \times (1.05) ²			$= \log 15 - \log 2 = \log 15/2$
29. A R = ? n = 2 A = P(1 + R) ⁿ 1348.32 = 1200(1 + R) ² $\frac{1348.32}{1200} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ R = 0.06 = 6% 30. A R = $\frac{20}{4} = 5 = 0.05$ N = $4 \times \frac{1}{2} = 2$ A = P(1 + R) ⁿ = 2000 (1 + 0.05) ² = 2000 × (1.05) ²	28.	В	(x-1)(2x-3) $x-1$ $(2x+3)$ $(x-1)(2x-3)$ $(2x+3)$
29. A R = ? n = 2 A = P(1 + R) ⁿ 1348.32 = 1200(1 + R) ² $\frac{1348.32}{1200} = (1 + R)^{2}$ 1.1236 = (1 + R) ² (1.06) ² = (1 + R) ² R = 0.06 = 6% 30. A R = $\frac{20}{4}$ = 5 = 0.05 N = $4 \times \frac{1}{2}$ = 2 A = P(1 + R) ⁿ = 2000 (1 + 0.05) ² = 2000 × (1.05) ²		-	$\frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{x} \times \frac{1}{x} = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right) \lim_{x \to \infty} \left(2 + \frac{1}{x}\right) = 2$
$n = 2$ $A = P(1 + R)^{n}$ $1348.32 = 1200(1 + R)^{2}$ $\frac{1348.32}{1200} = (1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $R = 0.06$ $= 6\%$ $30.$ $A = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$	29.	A	R = ?
$A = P(1 + R)^{n}$ $1348.32 = 1200(1 + R)^{2}$ $\frac{1348.32}{1200} = (1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $R = 0.06$ $= 6\%$ $30. A = R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			n = 2
$30. A \qquad R = \frac{20}{4} = 5 = 0.05 \\ N = 4 \times \frac{1}{2} = 2 \\ A = P(1 + R)^{n} \\ = 2000 \times (1.05)^{2} \\ = 2000 \times (1.05)^{2} \\ = 2000 (1 + 0.05)^{2} \\ = 2000 \times (1.05)^{2} \\ \end{bmatrix}$			$A = P(1 + R)^n$
$\frac{1348.32}{1200} = (1 + R)^{2}$ $\frac{1.1236}{1.1236} = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $R = 0.06$ $= 6\%$ 30. A R = $\frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			$1348.32 = 1200(1 + R)^2$
$\frac{101001}{1200} = (1 + R)^{2}$ $1.1236 = (1 + R)^{2}$ $(1.06)^{2} = (1 + R)^{2}$ $R = 0.06$ $= 6\%$ $30. A \qquad R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			$134832 - (1 + P)^2$
$30. A \qquad R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 \times (1.05)^{2}$			$\frac{101002}{1200} = (1 + R)$
$30. A = P(1 + R)^{n}$ $= 2000 \times (1.05)^{2}$ $= 0.05$ $= 6\%$			$11236 = (1 + R)^2$
$(1.06)^{-} = (1 + R)^{-}$ $R = 0.06$ $= 6\%$ $30. A \qquad R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			$(1 + R)^2 = (1 + R)^2$
R = 0.06 = 6% 30. A R = $\frac{20}{4}$ = 5 = 0.05 N = $4 \times \frac{1}{2}$ = 2 A = P(1 + R) ⁿ = 2000 (1 + 0.05) ² = 2000 × (1.05) ²			$(1.06)^{-1} = (1 + R)^{-1}$
$ = 6\% $ $ 30. A \qquad R = \frac{20}{4} = 5 = 0.05 $ $ N = 4 \times \frac{1}{2} = 2 $ $ A = P(1 + R)^{n} $ $ = 2000 (1 + 0.05)^{2} $ $ = 2000 \times (1.05)^{2} $			R = 0.06
30. A $R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			= 6%
30. A $R = \frac{20}{4} = 5 = 0.05$ $N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			
$N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$	30.	A	$B = \frac{20}{5} - 5 - 0.05$
$N = 4 \times \frac{1}{2} = 2$ $A = P(1 + R)^{n}$ $= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			4 - 5 - 0.05
$A = P(1 + R)^{n}$ = 2000 (1 + 0.05) ² = 2000 × (1.05) ²			$N = 4 \times \frac{1}{2} = 2$
$= 2000 (1 + 0.05)^{2}$ $= 2000 \times (1.05)^{2}$			$A = P(1 + R)^n$
$= 2000 \times (1.05)^2$			$= 2000 (1 + 0.05)^2$
			$= 2000 \times (1.05)^2$
	L	I	

		-2000×11025
		= 2000 × 1.1023
24	D	= 2205
31.	В	₹1.50
		$S.I. = \frac{600\times10\times1}{100} = $ ₹60
		C.I. = 600 $\left[\left(1 + \frac{10}{10000} \right)^{2 \times 1} - 1 \right] = 600 \left[\left(\frac{21}{20} \right)^2 - 1 \right] = \frac{600 \times 41}{20000} = ₹61.50$
		Difference between C L and S L = $\overline{2}(61.50 - 60) = \overline{2}1.50$
32.	С	An individual series is a particular case of discrete series
33.	A	Pie-chart
34.	D	Sum of components = $12 + 20 + 35 + 23 = 90$
		Central angle for the largest component $=\frac{35}{22} \times 360 = 140^{\circ}$
		Central angle for the smallest component $=\frac{12}{12} \times 360 = 48^{\circ}$
		Central angle differential between the largest and smallest component
		$= 140^{\circ} - 48^{\circ} = 92^{\circ}$
35.	В	Dom = real numbers. Ran = positive real numbers
36.	C	We know that
	Ŭ	$1^2 + 2^3 + 3^3 + 4^3 + n^3 - \left[\frac{n(n+1)}{n}\right]$
		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
		$1^{2} + 2^{3} + 3^{3} + 4^{3} + \dots 20^{3} = \left[\frac{20(20+1)}{2}\right]$
		$=(10 \times 21)^2$
		$=(210)^{2}$
		= 44100
37.	В	Let the 1st term be a and common ratio be r.
		$\begin{array}{ccc} \therefore a_4 = x \implies & ar^\circ = x \\ a_{10} = y \implies & ar^9 = y \end{array}$
		$a_{16} = z \implies ar^{15} = z$
		$\therefore XZ = (ar^3)(ar^{15})$
		$= a^2 r^{10}$ = $(ar^9)^2$
		$= y^2$
38.	А	1
39.	С	2
		$\lim_{x \to 1} \left[\frac{x}{x^2 - 1} - \frac{1}{x^2 - 1} \right] = \lim_{x \to 1} \left[\frac{x^2 - 1}{x^2 - 1} \right].$
		$\begin{bmatrix} x \to 1 \ (x - 1) \ (x - 1) \ (x + 1) \end{bmatrix} = \begin{bmatrix} x \to 1 \ (x - 1) \end{bmatrix}$
		$= \lim_{x \to 1} \left[\frac{x}{x(x-1)} \right] = \lim_{x \to 1} \frac{x}{x} = \frac{1}{1} = 2$
40.	В	0.92
		P(A) = 80% = 0.8
		P(B) = 60% = 0.6
		$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
		$= 0.8 + 0.6 - (0.8 \times 0.6)$
		= 0.14 - 0.48
		= 0.92
41.	D	0.875
		Event X: Part A is free defect and Event Y: Part B is free from defect
		P(X) = 1 - 0.08 = 0.92 P(X) = 1 - 0.05 = 0.95
L		F(1) - 1 - 0.00 = 0.00

	1	
		The two events X and y are independent as part A having no defects or otherwise does not influence on part B's being defective or otherwise.
		$P(X \cap Y) = P(X), P(Y) = 0.92 \times 0.95 = 0.874$
42.	D	mutually exclusive, exhaustive and equally likely cases.
43.	A	0
		$\log \frac{a^2}{bc} + \log \frac{b^2}{ca} + \log \frac{c^2}{ab}$
		$= \log \left(\frac{a^2}{a^2} \times \frac{b^2}{a^2} \times \frac{c^2}{a^2}\right) \text{ using } \log z \text{ (mn)} = \log z \text{ m+} \log n$
		$(bc \wedge ca \wedge ab)$ using log a (iiii) = log a iii log a (iii)
		$= \log\left(\frac{a^2 b^2}{a^2 b^2 c^2}\right)$
		$= \log 1$
11	B	= 0. $w = 21/3 + 2^{-1/3}$
		$x = 5^{7/4} + 5^{7/4}$
		$ x^{2} = (3^{2})^{2} + 3^{2} + 3^{2} = (3^{2})^{2} + (3^{2})^{2} + (3^{2})^{2} + (3^{2})^{2} = (3^{2})^{2} + (3^{2})^{2} + (3^{2})^{2} = (3^{2})^{2} + (3^{2})^{2} = (3^{2})^{2} + (3^{2})^{2} = (3^$
		$x^{2} = 5 + 5 + 5 \times 5^{7} \times 5^{7} \times (5^{7} + 5^{7})$ $x^{3} = 2 + \frac{1}{7} + 2 \times (2^{1/3} + 2^{-1/3})$
		$\begin{bmatrix} x^2 = 5 + \frac{1}{3} + 5 \times (5^{7} + 5^{7}) \\ 2 = 10 \end{bmatrix}$
		$x^{3} = \frac{x}{3} + 3x$
		$(: 3^{1/3} + 3^{-1/3} = x)$
		$3x^3 = 10 + 9x$
45	C	$3x^3 - 9x = 10$
40.		
		$\sqrt{7}\left(\sqrt{7\sqrt{7}}\right) = \sqrt{7} \times 7^{\frac{1}{2} + \frac{1}{4}} = \sqrt{7^{\frac{1}{4}}} = 7^{\frac{1}{8}}$
		$\log_7 \sqrt{7 \left(\sqrt{7} \sqrt{7}\right)} = 7/8$
		$\log \log 7 \sqrt{7 (\sqrt{7 \sqrt{7}})} = \log 7 - \log 7 - \log 9 = 1 - 2 \log 2$
40		$\log_7 \log 7 \sqrt{7} (\sqrt{777}) = \log_7 \frac{1}{8} = \log_7 7 = \log_7 8 = 1 = 3\log_7 2$
46.	В	0.06
		r = 0.8
		probable error of r :
		p.e. = $0.6745(\frac{1-y^2}{\sqrt{3}})$
		$-0.6745(1^{-(0.8)^2})$
		$= 0.0743(\frac{1}{\sqrt{16}})$
		$= 0.6745(\frac{-0.01}{4})$
		$= 0.6745 * \frac{0.36}{4}$
		= 0.06
47.	С	Four time of b _{yx}
		$\bigcup = \frac{x}{2} \Rightarrow c_x = 2$
		$V - 2v \rightarrow c = \frac{1}{2}$
		$v = 2y \Rightarrow c_y = \frac{1}{2}$
		$Bvu = \frac{c_x}{c_y} b_{yx}$
		$=\frac{2}{2}h$
		$\frac{1}{2}$ $\frac{3}{2}$
		$=4 b_{yx}$
		= four times b _{yx}
48.	В	
		In the word ARTICLE Total Vowels $-A + E(3)$
		Total consonant = R. T. C. L (4)
		$O \underline{E} O \underline{E} O \underline{E} O$
		No of ways $= {}^{3}p_{3} \times 4!$
		= 3 ! × 4 !
		7 Page

		$= 6 \times 24$
49.	С	371 The committee of 6 members is to include at least 2 girls. This can be constituted as follows : (i) 4 boys and 2 girls , it can be done is ${}^{7}C_{4} \times {}^{4}C_{2}$ ways (ii) 3 boys and 3 girls , it can be done is ${}^{7}C_{3} \times {}^{4}C_{3}$ ways (iii) 2 boys and 4 girls , it can be done is ${}^{7}C_{2} \times {}^{4}C_{4}$ ways Thus, the total number of ways of selecting the committee $= {}^{7}C_{4} \times {}^{4}C_{2} + {}^{7}C_{3} \times {}^{4}C_{3} + {}^{7}C_{2} \times {}^{4}C_{4}$ $= {}^{7!}_{\frac{4!}{4!\times 3!}} \times {}^{\frac{4!}{2!\times 2!}} + {}^{7!}_{\frac{3!\times 4!}{3!\times 1!}} \times {}^{\frac{4!}{3!\times 1!}} + {}^{7!}_{\frac{2!\times 5!}{2!\times 5!}} \times {}^{\frac{4!}{4!\times 0!}}$ $= 35 \times 6 + 35 \times 4 + 21 \times 1$ = 371
50.	C	$\frac{17}{2}$ $\int_{1}^{2} (3x+4)dx =$ $\int_{1}^{2} (3x+4)dx = \left[\frac{(3x+4)^{2}}{6}\right]_{1}^{2}$ $= \left[\frac{(3.2+4)^{2}}{6}\right] - \left[\frac{(3.1+4)^{2}}{6}\right]$ $= \left[\frac{10^{2}}{6}\right] - \left[\frac{7^{2}}{6}\right]$ $= \frac{100-49}{6}$ $= \frac{51}{6}$ $= \frac{17}{2}$
51.	С	$\frac{(3x+5)^5}{15} - \frac{(5-3x)^8}{24} + c$ Let $I = \int [(3x+5)^4 + (5-3x)^7] dx$ $\int (3x+5)^4 dx + \int (5-3x)^7 dx$ $= \frac{(3x+5)^5}{15} - \frac{(5-3x)^8}{24} + C$
52.	A	$\therefore \text{ the numbers are divisible by both 3 \& 7}$ $\therefore \text{ they should be divisible by 21}$ $\therefore \text{ The numbers between 200 and 400 are 210, 231, 252, \dots 399.}$ Here $a = 210, d = 21, a_n = 399.$ $\therefore a_n = a + (n - 1)d$ $\Rightarrow 399 = 210 + (n - 1)21$ $\Rightarrow 21 (n - 1) = 189$ $\Rightarrow n - 1 = \frac{189}{21} = 9$ $\Rightarrow n = 10.$ $\therefore s_n = \frac{n}{2}[a + a_n]$ $= \frac{10}{2}[210 + 399] = 5 \times 609$ = 3045
53.	В	$5, 9, 13, 17$ $S_n=2n^2+3n$ $\therefore S_1 = a_1 = 2 + 3 = 5$

		$S_2 = a_1 + a_2 = 2.2^2 + 3 \times 2$
		= 8 + 6
		= 14
		\Rightarrow 5+a ₂ = 1/
		$\Rightarrow 3 \cdot \alpha_2 = 14$ $\Rightarrow \alpha_1 = 0$
		$= u_2 = 0$: d = 2a = 2a = 0 = 5 = 4
		$u = a_2 = a_1 = 3 = 3 = 4$
		(ne series is 5, 9, 15, 17
		Shortcut $\ln 2\pi + \ln 2 + \ln 2$
		In an AP if $S_n = An^2 + Bn$
		Inen a = A+B
		& d = 2A
		\therefore Here a = 2 + 3 = 5
		And $d = 2 \times 2 = 4$
		∴ the series is 5, 9, 13, 17.
54.	D	The regression equation of y of x is:
		$y - \overline{y} = by \ x \ (x - \overline{x})$
		y - 27.9 = (-1.5) (x - 53.2)
		Or $y = 107.7 - 1.5x$
		When $x = 60$ then
		$y = 107.7 - 1.5 \times 60 = 17.7$
55.	D	$\sum xy - \frac{(\sum x) \times (\sum y)}{N}$
		$r = \frac{1}{\sqrt{(\sum r)^2}} \frac{N}{\sqrt{(\sum r)^2}}$
		$\sqrt{\sum x^2 - \frac{(\sum x)}{N}} \sqrt{\sum y^2 - \frac{(\sum y)}{N}}$
		$120 - \frac{75 \times 80}{52}$
		$=\frac{50}{(75)^2}=0$
		$\sqrt{130 - \frac{(75)^2}{50}} \sqrt{140 - \frac{(80)^2}{50}}$
56.	С	e
		$\lim_{x \to \infty} (2+x)^{1/x}$
		$\lim_{x \to 0} \left(\frac{1}{2 - x} \right)$
		$(1+\frac{1}{2}x)^{1/x}$
		$=\lim_{x \to 0} \frac{(-2x)}{(-1)^{1/x}}$
		$1 - \frac{1}{2}x$
		$e^{1/2}$ $\frac{1}{1+1}$
		$=\frac{1}{e^{-1/2}}=e^{2/2}$
		= e
57.	D	$L = \lim \frac{x^2 - 5x + 6}{2}$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$=\frac{1}{4-4}=\frac{1}{0}$ from
		Applying L's Hospital rule
		$L = \lim_{x \to 2} \frac{2x-5}{2x} = \frac{4-5}{4} = -\frac{1}{4}$
58.	В	Let x, y be the two numbers, then their
		A.M. = $\frac{x+y}{x}$ = 6.5 \Rightarrow x + y = 13(1)
		G.M. = $\sqrt{xy} = 6 \Rightarrow xy = 36$
		Now $(x - y) = \sqrt{(x + y)^2 - 4xy}$
		$=\sqrt{169-144}=5(2)$
		From (1) and (2), we get: x=9, y=4

50	•	Marg. 0.57
59.	A	Mean = 3.57
		Mode = 2.13
		As per empirical formula,
		Mode = 3 Median - 2 Mean
		$2.13 = 3 \text{ Me} - 2 \times 3.57$
		2.13 = 3 Me - 7.14
		3 Me = 2.13 + 7.14
		3 Me = 9.27
		$Me = \frac{9.27}{3} = 3.09$
		∴ Median = 3.09
60.	С	The sample space S is given by,
		$S = \{HHT, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
		The number of sample points $= n(S) = 8$
		Let A be the event that of getting at mot one head, i.e., one head or no head (all tails)
		$A = \{HTT, THT, TTH, TTT\}$
		(A) A D(A) A 1
		$\therefore n(A) = 4 P(A) = \frac{1}{n(S)} = \frac{1}{8} = \frac{1}{2}$
		Let B be the event that of getting two consecutive heads $B = \{THH, HHT\}$
		p(R) = n(A) = 2 = 1
		$F(B) = \frac{1}{n(S)} = \frac{1}{8} = \frac{1}{4}$
61.	А	Let X be a variable which takes the values a and b, with probability p and q respectively
		a =₹ 300, b =₹ 80, p = 0.57, q = 0.43,
		The expectation is:
		$E(X) = (a \times p) + (-b) q$
		$\therefore E(X) = (300 \times 0.57) + (80 \times 0.43)$
		=₹ (171 - 34.4) = 136.6
62.	В	The units of the variables are different
63.	D	Produce an outcome which is neither certain nor impossible
64.	А	4
		We have $\frac{2n+1}{2n-1} = \frac{3}{5}$
		$\Rightarrow 5. {}^{2n+1}P_{n-1} = 3. {}^{2n-1}P_n$
		$\rightarrow \frac{5.(2n+1)!}{2} - \frac{3(2n-1)!}{2}$
		(n+2)! - (n-1)!
		$\Rightarrow \frac{5 \cdot (2n+1)(2n)(2n-1)!}{(n+2)(n+1)!} = \frac{3(2n-1)!}{(n+1)!}$
		(n+2)(n+1)n(n+1)! $(n-1)!\Rightarrow 10(2n+1) = 3(n+2)(n+1)$
		$\Rightarrow 3n^2 - 11n - 4 = 0 \Rightarrow n = 4$
65.	С	100
		The selection may have,
		1 girl and 6 boys = 4 C $_{1} \times {}^{6}$ C $_{6}$ = 4
		Or
		2 girls and 5 boys = 4 C $_{2}$ × 6 C $_{5}$ = 36
		Or
		3 girls and 4 boys = 4 C $_{3}$ × 6 C $_{4}$ = 60
		Hence total number of ways is $60 + 36 + 4 = 100$.
66.	C	x^2
		$\frac{1}{2} + 2 \cdot x + \log x $

	1	
		$\frac{x^2}{2} + 2 \cdot x + \log x + c$
		Let I $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$
		$=\int \left(x+2+\frac{1}{x}\right)^{n} dx$
		$= \int x dx + 2 \int dx + \int \frac{1}{x} dx$
		$=\frac{x^2}{2}+2x+log x +c$
67.	C	2 × 100 × 000 pm + 0
		The equation of the straight line passing through the points (2.2) and (-6.3) is given by two
		point form
		$(y - y_{,}) = \left(\frac{y_2 - y_1}{x_1 - x_1}\right) (x - x_1)$
		$\Rightarrow (y-2) = \left(\frac{3-2}{-6-2}\right) (x-2)$
		\Rightarrow (y -2) $\left(\frac{1}{2}\right)$ (x-2)
		$\Rightarrow -8y + 16 = x - 2$
		\Rightarrow x + 8y = 18
68.	А	(-1, 1)
		$X^{3}+x^{2}-x-1=0$ Or. $x^{3} - x^{2} + 2x^{2} - 2x + x - 1 = 0$
		Or, $x^{2}(x-1) + 2x(x-1) + (x-1) = 0$
		$\begin{array}{l} \text{Or, } (x - 1) (x^2 + 2x + 1) = 0 \\ \text{Or, } (x - 1) (x + 1)^2 = 0 \end{array}$
		Therefore, $x = 1, -1$
69.	А	If $y = a + bx$, then $\sigma_y = b \sigma_x$
		Let $y = 5 - 2x \therefore \sigma_y = -2 \sigma x$
		$= 2 \times 3 = 6$
70		: Variance $(5 - 2x) = (2)^2 \times 9 = 36$
70.	С	Total salary of 75 employees = $1420 \times 75 = ₹1,06,500$
		Total salary of 25 employees = $₹25 \times 1350 = ₹33,750$
		Total salary of 20 remaining $=$ ₹(1.06.500 = 33.750 = 42.750) $=$ ₹ 20.000
		$P_{2,7,50} = 42,750$
74		Required Average = $\frac{1}{20}$ = 1500
/1.	A	Required probability
		= P(ABC) + P(ABC) + P(A'BC) $4 3 (4 2) 4 (4 3) 2 (4 4) 3 2$
		$= \frac{1}{5} \times \frac{3}{4} \times \left(1 - \frac{1}{3}\right) + \frac{1}{5} \times \left(1 - \frac{3}{4}\right) \times \frac{3}{3} + \left(1 - \frac{1}{5}\right) \times \frac{3}{4} \times \frac{3}{3}$
		$=\frac{12+8+6}{60}=\frac{13}{30}$
72.	D	Given $P(E) = \frac{1}{r}, P(\frac{F}{r}) = \frac{1}{10}$
		$\therefore P(E \cap F) = P(E) \cdot P(F/E)$
		$=\frac{1}{1}, \frac{1}{10} = \frac{1}{100}$
		∴ Probability of non-occurrence of at least one of the events of E and F
		$=1-p(E \cap F)$
		$=1-\frac{1}{50}=\frac{49}{50}$
73.	с	6, 12, 24, 48
		For GM's between a and b. $r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

		$r = \left(\frac{96}{2}\right)^{\frac{1}{4+1}} = (32)^{1/5} = 2$
		The four G.M.'s are
		$G_1 = a \times r = 3 \times 2 = 6$
		$G_2 = a \times r^2 = 3 \times 2 = 12$
		$G_3 = a \times r^3 = 3 \times 2 = 24$
		$G_4 = a \times r^4 = 3 \times 2 = 48$
74.	D	Given : $T_n = 164$ and $s_n = 3n^2 + 5n$. $s_{n-1} = 3(n-1)^2 + 5(n-1) = 3n^2 - n - 2$
		But, $T_n = S_n - S_{n-1} \implies 164 = 3n^2 + 5n - (3n^2 - n - 2) = 6n + 2$
		$\Rightarrow 6n = 164 - 2 = 162$. $\therefore n = 27$ $\therefore 27th term is = 6 \times 27 + 2 = 164$
75.	D	1 or 2
		$\log_2(3^{2x-2} + 7) = \log_2 4 + \log_2(3^{x-1} + 1)$
		$\begin{bmatrix} \therefore 2 = 2 \ \log_2 2 = \log_2 2^2 \end{bmatrix}$ $\implies 3^{2x-2} + 7 = 4(3^{x-1} + 1)$
		$\Rightarrow t^{2} + 7 = 4(t+1), \text{ where } 3^{x-1} = t$
		$\Rightarrow t^2 - 4t + 3 = 0 \Rightarrow t = 1,3.$
		When t=1 \Rightarrow 3 ^{x-1} = 1 \Rightarrow x = 1; When t=2 \Rightarrow 2 ^{x-1} = 2 ¹ \Rightarrow x = 2
76.	В	$ \begin{array}{c} \text{When } (=5 \rightarrow 5) = 5 \rightarrow x - 2. \\ \hline (1 + 1) - \end{array} $
		$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
		$=\left(\frac{1}{1+x^{n-m}}+\frac{1}{1+x^{m-n}}\right)$
		$=\left(\frac{1}{1+x^n/x^m}+\frac{1}{1+x^m/x^n}\right)$
		$=\left(\frac{x^m}{x^m+x^n}+\frac{x^n}{x^n+x^m}\right)$
		$=\left(\frac{x^m+x^n}{x^m+x^n}\right)$
		$= 1^{(x^m + x^n)}$
77.	В	9%
		Let the required rate be R%: $\left(\frac{2000\times 8\times 1}{100}\right) + \left(4000\times \frac{15}{2}\times \frac{1}{100}\right)$
		$+(1400 \times \frac{17}{2} \times \frac{1}{2}) + (2600 \times R \times \frac{1}{2}) = (\frac{813}{2} \times 1000)$
		(2 100) (1000)) $ \Rightarrow 160 + 300 + 119 + 26R = 813 \Rightarrow R = 9\% $
78.	C	1 00 + 500 + 115 + 201 + 015 / R 5/0
		Here $T=20/12$ years= 5/3 years
		$\begin{pmatrix} & P \times T \end{pmatrix} \begin{pmatrix} & R \times \left(\frac{5}{2}\right) \end{pmatrix}$
		$A = P\left(1 + \frac{n \times 1}{100}\right) \Rightarrow 50000 = 46875\left(1 + \frac{n \times 1}{100}\right)$
		$\Rightarrow \left(\frac{50000}{1607\pi}\right) \times 100 = 100 + \left(\frac{5}{2}\right) R \Rightarrow R = 4\%$
79.	<u> </u>	$R \subset I$
	C	If R is the set of Isosceles right angled triangles and I is the set of isosceles
		triangles, then $R \subset I$, because some isosceles triangles are isosceles right angled
		triangles, but all isosceles right angled triangles are isosceles triangles.
80.	В	Vve have $A' \cap B' = (A \cup B)'$ $\therefore n(A' \cap B') = n(A \cup B)' = n(U) = n(A \cup B) = n = [n(A) \pm n(B) = n(A \cap B)]$
		= 700 + (200 + 300 - 100) = 300.
81.	A	The two lines of regression are
		x + 4y = 3(1)
		and $3x + y = 15$ (2)
		If we take (1) as the regression equation of Y on X, then (2) is that of X on Y. These two
		equations can be written as:
		$y = -\frac{1}{4}x + \frac{3}{4}$ and $x = -\frac{1}{3}y + \frac{15}{3}$
1	1	

		$b_{yy} = -\frac{1}{2} an b_{yy} = -\frac{1}{2}$
		$y^{x} = 4$ $x^{y} = 3$ $h = x h = -\frac{1}{2} < 1$ So our choice is valid
		$D_{xy} \times D_{yx} = \frac{1}{12} < 1.$ So, our choice is valid.
		To find x, when $y = 3$, we are to use the regression equation of x on Y.
		$x = -\frac{1}{3} \times 3 + 5 = 4.$
82.	А	$b_{xy} = r(\sigma_y / \sigma_x)$
		$= 0.75 \times (12/12) = (3/4)$
		Regression line y on x is
		$y - \overline{y} = b_{xy}(x - \overline{x})$
		$\Rightarrow y - 80 = (3/4)(x - 15)$
		Putting $x = 55$ in it, we get : $y = 110$
83.	А	Let the father's age = x years, and the son's age = y years.
		As per conditions of the problem,
		x + 2y = 70(1) and $2x + y = 95$ (2)
		From (1), we get : $x = 70 - 2y$. Substituting it in (2), we get
		2(70 - 2y) + y = 95
		-5y = -45 of $y = 15x = 70 = 2 \times 15 = 40$
		Hence father's age = 40 years and son's age = 15 years
84.	C	The numbers divisible by 5 between 234 and 1234 are 235, 240, 245, 1230
	U	It is an AP with a = 235, d = 5 and a_n =1230
		$a_n = a + (n-1)d$
		$\Rightarrow 1230 = 235 + (n-1)5$
		$\Rightarrow 5(n-1) = 1230 - 235$
		$\Rightarrow n-1 = 995 / 5$
		$\Rightarrow n-1 = 119$
		$\Rightarrow n = 200$
		∴ there are 200 such numbers
85.	В	$L = \lim \frac{\sqrt{3+x} - \sqrt{9-x}}{2} = \frac{0}{2}$
		$x \rightarrow 3$ $x^2 - 9$ 0 Applying L's Hospital rule
		$\frac{1}{-1} - \frac{1}{-1} - \frac{1}{-1}$
		$L = \lim_{x \to 3} \frac{2\sqrt{3} + x - 2\sqrt{9} - x^{\sqrt{-1}y}}{2x}$
		$\lim \frac{\sqrt{3+x} - \sqrt{9-x}}{1} = \lim \frac{1}{1} \left[\frac{1}{1} + \frac{1}{1} \right]$
		$\begin{array}{cccc} x \rightarrow 3 & x^2 - 9 & x \rightarrow 3 & 2x & \left\lfloor 2\sqrt{3} + x & 2\sqrt{9} - x \right\rfloor \\ 1 & 1 & 1 & 1 \end{array}$
		$=\frac{1}{6}\left[\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{6}}\right]$
		$=\frac{1}{6}\left[\frac{2}{2\sqrt{6}}\right]=\frac{1}{6\sqrt{6}}$
86.	В	log abc
		$a^{x}+b^{x}+c^{x}-3 = 0$
		$\lim_{x \to 0} \frac{1}{x} = \frac{1}{0}$
		$\lim_{x \to 0} \frac{a^x \log a + b^x \log b + c^x \log c}{1}$
		$= \log a + \log b + \log c = \log abc$
87.	A	Let us denote $P = Practice$, $I = Industry$, $S = Service$. Then it is given that
		n(P) = 120, n(I) = 112, n(A) = 160
		$n(P \cap S) = 32, n(P \cap S) = 40, n(I \cap S) = 20, n(I \cap P \cap S) = 12.$ Now $n(I \cup P \cup S)$
		$= n(I) + n(P) + n(S) - n(I \cap P) - n(I \cap S) - n(P \cap S) + n(I \cap P \cap S)$

		= 112 + 120 + 160 - 40 - 20 - 32 + 12 = 312
		Those who could not get any job= $400 - n(I \cup P \cup S) = 400 - 312 = 88$
88.	А	Symmetric
89.	D	Now $(18)^{3.5} \div (27)^{3.5} \times 6^{3.5} = 2^x \implies (18)^{3.5} \times \frac{1}{(27)^{3.5}} \times 6^{3.5} = 2^x$
		$\Rightarrow (3^2 \times 2)^{3.5} \times \frac{1}{(3^3)^{3.5}} \times (2 \times 3)^{3.5} = 2^x \Rightarrow 3^{(2 \times 3.5)} \times 2^{3.5} \times \frac{1}{3^{(3 \times 3.5)}} \times 2^{3.5} \times 3^{3.5} = 2^x$
		$\implies 3^7 \times 2^{3.5} \times \frac{1}{(3)^{10.5}} \times 2^{3.5} \times 3^{3.5} = 2^x \implies 2^7 = 2^x \implies x = 7$
90.	С	$a + b = 6k, b + c = 7k, c + a = 8k.$ $\therefore (a + b) + (b + c) + (c + a) = 6k + 7k + 8k$
		$\Rightarrow 2(a+b+c) = 21k \Rightarrow k = \frac{2(a+b+c)}{21} = \frac{2\times14}{21} = \frac{4}{3}$
		$c = (a + b + c) - (a + b) = 14 - 6 \times \frac{4}{3} = 6.$
91.	С	p(7,k) = 60P(7,k-3)
		$={}^{7}p_{k}=60{}^{7}P_{k-3}$
		$\frac{7!}{(7-k)!} = 60 \times \frac{7!}{[(7-(k-3))!]} = \frac{1}{(7-k)!} = 60 \times \frac{1}{(7-k+3)!} = (10-k)! = 60 (7-k)!$
		$\frac{(10-k)(9-k)(8-k)(7-k)!}{(7-k)!} = 60$
		(10-k)(9-k)(8-k) = 60
		$(10^{-1}k)(5^{-1}k)(6^{-1}k) = 00^{-1}$ $720 - 242k + 27k^2 - k^3 = 60^{-1}$
		$660 - 242k + 27k^2 - k^3 = 0$
		$k^3 - 27k^2 + 242k - 660 = 0$
		$(k-5)(k^2-22k+132) = 0$
		$K = 5$, since $k^2 - 22k + 132 = 0$ gives imaginary roots
92.	В	Total number of numbers = $\frac{7!}{1}$ = 420 ways
		Out of these 420 number, some will begin with 0 and are less than one million, and
		they are rejected.
		\therefore Number of numbers beginning with $0 = \frac{6!}{2! \times 2!} = 60$ ways
		Hence required number of numbers = $420 - 60 = 360$ ways
93.	А	Here, $\overline{u} = 3\overline{x} + 4\overline{y}$ and $\overline{u} = 3\overline{x} - \overline{y}$.
		$\therefore u - \overline{u} = 3(x - \overline{x}) + 4(y - \overline{y})$
		$v - \overline{v} = 3(x - \overline{x}) - (y - \overline{y})$
		$Cov (U,V) = \frac{1}{n} \sum (u - \overline{u})(v - \overline{v})$
		$= \frac{1}{n} \sum [\{9(x - \overline{x})^2 - 4(y - \overline{y})^2 + 9(x - \overline{x})(y - \overline{y})\}]$
		$=9\left(\frac{\Sigma(x-\overline{x})^2}{n}\right) - 4\left(\frac{\Sigma(y-\overline{y})^2}{n}\right) + 9\left(\frac{(x-\overline{x})(y-\overline{y})}{n}\right)$
		$=9\sigma_{x}^{2} - 4\sigma_{y}^{2} + 9Cov(X,Y)$
		$= 9 \times 4 - 4 \times 9 + 9(0) = 0.$
		$(\therefore X, Y \text{ are independent } \therefore Cov(X, Y) = 0)$
		$\Rightarrow p(U,V) = \frac{Cov(U,V)}{\sigma_{U}\sigma_{v}} = 0$
94.	D	As we know, that the mean values of 2 regression equations are their points of
		intersection, therefore solving the equations simultaneously.
		Given:-
		$5x - 145 = -10\bar{y} \text{ and } 14\bar{y} - 20 = -8\bar{x}$
		$\Rightarrow 5\bar{x} + 10\bar{y} = 145 \dots (1)$
		$8\bar{x} + 14\bar{y} = 208$ (2)
		$\therefore 40\bar{x} + 80\bar{y} = 1160$ (3)
		$40\bar{x} + 70\bar{y} = 1040$ (4)
		Subtracting (4) from (3), we get:
		$\bar{y} = 12$ Putting $\bar{y} = 12$ in (1), we get

		$\bar{x} = 5$
		$\therefore (\bar{x}, \bar{y}) = (5, 12)$
95.	А	Since α , β are the roots of $3x^2 - 4x + 1 = 0$, therefore, $\alpha + \beta = 4/3$ and $\alpha\beta = 1/3$.
		$S = \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{1}{\alpha\beta} [(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)]$
		$= 3. \left[\frac{64}{27} - 3 \times \frac{1}{3} \times \frac{4}{3} \right] = \frac{28}{9} . \text{ Also } P = \frac{\alpha^2}{\beta} . \frac{\beta^2}{\alpha} = \alpha\beta = \frac{1}{3}$
		Hence required equation is $x^2 - Sx + P = 0$. i.e. $x^2 = \frac{28}{9}x + \frac{1}{3} = 0$
		$Or \ 9x^2 - 28x + 3 = 0$
96.	А	Let the sides of the equilateral triangle be x each.
		They are shortened by 3, 2, 1 units respectively
		Therefore the sides of the new triangle are $x - 3$, $x - 2$, $x - 1$.
		It is a right angle triangle, with longest side $= x - 1$.
		$\therefore (x-2)^2 + (x-3)^2 = (x-1)^2$
		$x^2 - 4x + 4 + x^2 - 6x + 9 = x^2 - 2x + 1$
		$x^2 - 8x + 12 = 0$
		(x-6)(x-2) = 0
		x cannot be 2 as it will make the sides negative
		Therefore, $x = 6$
97.	В	The equation of a line passing through the intersection of $x - y - 1 = 0$ and $2x - 3y + 1 = 0$ is:
		$x - y - 1 + k (2x - 3y + 1) = 0 \implies (1 + 2k) x - (1 + 3k) - (1 - k) = 0 \dots (1)$
		Slope of line (1) $= \frac{1+2k}{1+3k} = m_1$. Slope of the line $3x + 4y = 12$ is $\frac{-3}{4} = m_2$ (say)
		Now $m_1 = m_2 \implies (1+2k)/(1+3k) = (-3/4) \implies k = -7/17$
		Putting $k = -7/17$ in (1), we get $3x + 4y - 24 = 0$ or $3x + 4y = 24$
98.	С	Median
99.	С	Grouped mean
100.	A	all observations have the same sign and none is zero